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Connections between Abstract Quantum Theory and 
Space-Time Structure. III. Vacuum Structure 
and Black Holes 
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Quantum-theoret ic  considerations for the ground state of  a black hole result in 
a change of its interior solution. It is shown that the interior of  a Schwarzschild 
black hole can be modeled by an ur-theoretically described Robertson-Walker  
space-time. Thereby the Schwarzschild singularity is changed into a Friedman 
singularity. 

1. INTRODUCTION 

One expects that an appropriate unification of quantum theory and 
gravitation theory should lead to an explanation of the observed smallness 
of  the cosmological constant and to a better understanding of the space-time 
singularities of  classical general relativity. We do not think that one should 
try to avoid or even remove space-time singularities in quantized gravity; 
we rather take singularities as precious hints to look for a new type of  
unification. The usual attempts to construct a union of quantum theory and 
gravity are applications of quantization procedures to gravitation theory 
retaining the space-time continuum even at very small distances. 

In this paper we do not presuppose a space-time continuum first but 
start with abstract quantum theory, i.e., the quantum theory of binary 
alternatives (Drieschner et al., 1987; G6rnitz, 1988a, b). Space-time is intro- 
duced via the invariance group of the "ur ,"  the quantized binary alternative. 
This invariance group turns out to be U(2). 
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The time development is given by the subgroup U(1) and for the 
symmetric space representing position space we have 

I [ .  

U(2) /U(1)  = SU(2) = S ~ 

[for details see G6rnitz (1988a)]. Taking this as a model for cosmic space 
where the evolution of  this cosmos is described by a growing number of 
urs, we get a Robertson-Walker space-time (with k = + l )  with the right 
order of an effective cosmological constant being a consequence of this 
model (G6rnitz, 1988b). 

Now let us consider a black hole. Assigning an entropy to the black 
hole (Bekenstein, 1973, 1974) led to the problem that one must also assign 
a temperature, i.e., the black hole had to radiate, which is absolutely 
forbidden by the classical theory. The resolution of  this difficulty was given 
by Hawking (1975), showing that quantum effects cause black holes to 
create and emit particles, i.e., application of  quantum theory led to reason- 
able results for the exterior region of the black hole. 

Here we want to employ quantum-theoretic considerations for the 
interior solution. But how can we model an interior black hole solution 
taking quantum effects into account? 

The central point for quantum theory is the existence of a ground state 
and its dependence on the system's extension. The horizon of a black hole 
defines an informationally closed volume, i.e., a finite volume where no 
information about its internal states can be obtained outside. The ground 
state of such an ideal box has to depend on the radius of the event horizon. 
Another informationally closed volume is a Robertson-Walker universe 
with k = +1. We show now that the interior of  a Schwarzschild black hole 
can be modeled by an ur-theoretically described Robertson-Walker space- 
time. 

2. THE ENERGY-MOMENTUM TENSOR 

We assume that the quantized binary alternatives, the urs, behave like 
a perfect fluid with energy-momentum tensor 

(ur) Tab:  (P -t- p)UaUb -- P g . b  (1) 

where p is the energy density density of the ur-fluid, Ua the normalized 
four-velocity vector, and the pressure is given by 

p = - p / 3  (2) 

A derivation of  this relation between energy density and pressure is given 
in G6rnitz (1988a, b). 
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We take p - 0 ,  i.e., the pressure becomes negative. Usually one does 
not like negative pressures in physics. Nevertheless, a negative pressure is 
not unknown; it may occur, for example, in certain nonequilibrium states. 
In general relativity, the pressure contributes to the gravitational force, 
which in the case of negative pressure leads to the effects of a repulsive 
contribution to the gravitational force. Actually, some models which try to 
solve the horizon problem of  the early universe use a negative pressure 

Pvac  = - - P v a c  

associated with the cosmological constant as the energy density of  the 
vacuum to derive inflation (see, e.g., Guth 1981; Albrecht and Steinhard, 
1982; Linde, 1982; Weinberg, 1988). 

We want to show now that our negative pressure of equation (2) stays 
within the limits set by all relevant energy conditions in general relativity. 

The weak energy condition states that the energy as measured by any 
observer is nonnegative. Every physically reasonable energy-momentum 
tensor is diagonalizable. Written in an orthonormal basis, the three principal 
pressures p coincide for uniform pressure and the eigenvalue p represents 
the rest energy density. In this case, the weak energy condition is equivalent 
to 

p-->0 and p+p>-O (3) 

The strong energy condition which limits the stresses and guarantees 
the existence of singularities is equivalent to 

p + 3 p - > 0  and p+p>-O (4) 

Finally, the dominant energy condition, which states that the velocity 
of the energy flow is always less than the speed of light, is equivalent to 

P>-IPl (5) 

As is easily seen, (2) fulfils all these energy conditions. It is interesting 
to notice that this negative pressure is the maximal negative pressure to 
obey the strong energy condition and is somehow just the opposite of 
radiation with 

p=p/3 

The energy-momentum density of the vacuum acts like a cosmological 
constant. Let us therefore decompose (ur) Tab into a sum of energy-momentum 
tensors for matter, radiation, and vacuum: 

(~, Tob = (~t) Tab + (~)  Tob + (w~) Tab (6) 
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where 

Pmat 

0 
(m~t) Tab = 0 

0 

Prad 

(rad) Tab = - p ~ . o /  3 

(vac) Tab = A A 

A 

--Prad/3 

" Prad/ 3 
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(7) 

(8) 

(9) 

3. THE METRIC 

We want to construct now an interior Schwarzschild solution with 
energy momentum tensor (ur) Tab a s  given by (1) and (2). 

We start with the most general form of a spherically symmetric metric 

ds 2 = e 2A dt  2 -  e 2R dr 2 -  r2( d02 + sin 2 0 dq~ 2) (10) 

where 

A = A(r ,  t),  B = B(r ,  t) 

By Birkhoff's theorem, a spherically symmetric vacuum solution has 
to be static, i.e., has to be the Schwarzschild solution. Therefore, we have 
to choose 

A(r ,  t ) = � 8 9  J r )  ( l l a )  

B(r,  t ) = - � 8 9  l n ( 1 - R s / r )  ( l l b )  

with Rs as a constant, which leads to the Schwarzschild metric 

ds 2 = (1 - R , /  r ) dt ~ - [( 1 - R , /  r ) -  I dr 2 + r2( dO 2 + sin 2 0 dO 2)] 
(12) 

for R s <  r < o o  

For the interior solution we take 

a ( r ,  t ) = 0  (13a) 

B(r, t) = -�89 ln(1 - r2/R~)  (13b) 
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i .e . ,  the line element 

ds 2 = dt 2 -  [(1 - rE~ RE) -1 dr2 + rE(doE+ sin E 0 dthZ)] 
(14) 

f o r 0 <  r < R ,  

Einstein's field equations 

Gab = --/(T~b (15) 

with the energy-momentum tensor of  a perfect fluid lead to 

G o= -/(p,  G~ = •p (a, 13 = 1, 2, 3) (16) 

and with (14) to 

p = 3/(/(R2), p = - 1 / ( / ( R  2) (17) 

The total mass is computed as 

Io' 2 M  = K or E dr = R,  (18) 

ke., Rs is actually the Schwarzschild radius. 
To join the interior and exterior solutions together, one normally 

demands that the kinetic pressure is zero on the surface of the fluid ball. 
Actually, a match could not be achieved for an interior of  uniform and 
nonzero positive pressure and uniform energy density, because the infinite 
surface pressure gradient would blow off the outer layers of  the fluid and 
send a rarefaction wave propagating inward, thereby destroying the uniform 
distribution. 

In our model the uniform pressure is negative and not zero on the 
surface. But in this case it results from contributions of  the energy density 
of  the vacuum, which acts like an effective cosmological constant, i.e., for 

ef~A = - a  (19) 

equations (6)-(9) yield 

e~Gab + effAgab = - - / ( ( ( m a t ) T a b  + (rad)Tab) (20) 

I f  we apply the coordinate transformation 

r '= r / R ,  (21) 

to the line element (14), we get 

dsE=dtE-REs[ (1 - r '2 )  - '  dr'E+r'2(dO2+sin2 0 d~b2)] (22) 

a stationary Rober tson-Walker  solution, i.e., an Einstein cosmos with cur- 
vature radius R,. 
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The stationarity of this solution is closely connected with requirement 
(2) for Cur)Tab. Taking a general Robertson-Walker metric (k = +1) 

ds 2 = dt 2 -  a(t)2[(1 - r2) -~ dr2+ r2(d02+ sin 2 0 &b2)] (23) 

the field equations with the energy-momentum tensor of a perfect fluid give 

K(p +3p)  = - 6 i i ( t ) / a ( t )  (24) 

This implies 

i.e., 

//(t) = 0 iff p = - p / 3  (25) 

a(t)  = a (0 )+  vt 

with v as constant expansion velocity. 

(26) 

4. DISCUSSION 

The standard Schwarzschild solution has an implicit supposition that 
the formation of a horizon has no influence on the structure of  the vacuum. 
This is a natural assumption in the framework of  general relativity. But 
from a quantum-theoretic point of  view, the formation of  a horizon (like 
any enclosure) should show a back reaction on the quantum ground state. 
In our model we take this into consideration via the introduction of  a 
negative pressure associated with the vacuum energy density. With this 
assumption, the interior of  a Schwarzschild black hole can be described by 
a complete stationary Robertson-Walker space-time, i.e., replacing the 
Schwarzschild singularity by a Friedmann singularity. 

As Penrose (1982) conjectured, principles other than the ones we use 
already in physics should come into play at a singularity, bringing along 
with them the time-asymmetric character necessary to explain the second 
law of  thermodynamics. In our model, time asymmetry is actually built in. 
It is one of the fundamental postulates of abstract quantum theory, and 
therefore for the theory of  quantized binary alternatives. We take this as a 
hint that the so-called singularity problem may in fact be a problem of 
understanding the concept of  time. 
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